Conditions governing the occurrence of supershear ruptures under slip-weakening friction

نویسنده

  • Eric M. Dunham
چکیده

[1] A general theory for transitions between sub-Rayleigh and intersonic rupture speeds is developed for faults governed by slip-weakening friction. The transition occurs when stresses moving at intersonic speeds ahead of expanding or accelerating sub-Rayleigh ruptures exceed the peak strength of the fault, initiating slip within a daughter crack. Upon reaching a critical nucleation length, the daughter crack becomes dynamically unstable, expanding into a self-sustaining intersonic rupture. This mechanism holds in both two and three dimensions. On faults with uniform properties, the seismic S ratio [S = (tp t0)/(t0 tr)], a measure of the initial loading stress, t0, relative to the peak and residual strengths, tp and tr, respectively, must be smaller than some critical value for the transition to occur. The maximum S value for unbounded faults in three dimensions is 1.19, smaller than the value of 1.77 that Andrews (1985) has shown to govern the transition in two dimensions. The supershear transition length (i.e., how far the rupture propagates before reaching intersonic speeds) is proportional to a length scale arising from the friction law governing the nucleation and stability of the daughter crack. A sufficiently narrow fault width suppresses the transition; the critical width is approximately 0.8 times the transition length on an unbounded fault. The transition length is highly sensitive to the form of the slip-weakening law even when the associated fracture energies are identical. Heterogeneous propagation, in the form of abrupt accelerations or increases in stress-release rate, induces stress-wave radiation that can trigger transient bursts of intersonic propagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of supershear transition regimes in rupture experiments: the effect of nucleation conditions and friction parameters

S U M M A R Y We consider the effect of the rupture initiation procedure on supershear transition of Mode II ruptures on interfaces governed by linear slip-weakening friction. Our study is motivated by recent experiments, which demonstrated the transition of spontaneous ruptures from sub-Rayleigh to supershear speeds in the laboratory. In these works the experiments were analysed using the Burr...

متن کامل

Understanding dynamic friction through spontaneously evolving laboratory earthquakes

Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging...

متن کامل

Pulse-like and crack-like dynamic shear ruptures on frictional interfaces: experimental evidence, numerical modeling, and implications

Destructive large earthquakes occur as dynamic frictional ruptures along pre-existing interfaces (or faults) in the Earth’s crust. One of the important issues in earthquake dynamics is the local duration of relative displacement or slip. Seismic inversions show that earthquakes may propagate as selfhealing pulse-like ruptures, with local slip duration being much shorter than the overall rupture...

متن کامل

Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction

S U M M A R Y We study in-plane ruptures on a bimaterial fault governed by a velocity-weakening friction with a regularized normal stress response. Numerical simulations and analytical estimates provide characterization of the ranges of velocity-weakening scales, nucleation lengths and background stresses for which ruptures behave as cracks or pulses, decaying or sustained, bilateral or unilate...

متن کامل

Rupture modes in laboratory earthquakes: Effect of fault prestress and nucleation conditions

[1] Seismic inversions show that earthquake risetimes may be much shorter than the overall rupture duration, indicating that earthquakes may propagate as self‐healing, pulse‐like ruptures. Several mechanisms for producing pulse‐like ruptures have been proposed, including velocity‐weakening friction, interaction of dynamic rupture with fault geometry and local heterogeneity, and effect of bimate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007